Convergence Analysis of the Lowest Order Weakly Penalized Adaptive Discontinuous Galerkin Methods
نویسندگان
چکیده
In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods.
منابع مشابه
Pressure Recovery for Weakly Over-Penalized Discontinuous Galerkin Methods for the Stokes Problem
In this paper, two postprocessing procedures for pressure recovery are proposed and analyzed for the weakly over-penalized discontinuous Galerkin methods developed in Liu in SIAM J Numer Anal 49:2165–2181, 2011 for the Stokes problem in two dimensions. These pressure recovery procedures are just elementwise calculations, benefiting from the weak over-penalization in the corresponding velocity s...
متن کاملWeakly over-penalized discontinuous Galerkin schemes for Reissner-Mindlin plates without the shear variable
This paper introduces a new locking–free formulation that combines the discontinuous Galerkin methods with weakly over-penalized techniques for Reissner– Mindlin plates. We derive optimal a priori error estimates in both the energy norm and L2 norm for polynomials of degree k = 2, and we extend the results concerning the energy norm to higher-order polynomial degrees. Numerical tests confirm ou...
متن کاملLow Order Discontinuous Galerkin Methods for Second Order Elliptic Problems
Abstract. We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric version of the DG-method are well-posed also without penalization of the interelement solution jumps provided boundary conditions are imposed weakly. Optimal convergence is proved for sufficiently reg...
متن کاملDiscontinuous Galerkin with Weakly Over-Penalized Techniques for Reissner-Mindlin Plates
In this article we introduce a new locking-free completely discontinuous formulation for Reissner–Mindlin plates that combines the discontinuous Galerkin methods with weakly over-penalized techniques. We establish a new discrete version of Helmholtz decomposition and some important residual estimates. Combining the residual estimates with enriching operators we derive an optimal a priori error ...
متن کاملConvergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method
We study the convergence of an adaptive Interior Penalty Discontinuous Galerkin (IPDG) method for a 2D model second order elliptic boundary value problem. Based on a residualtype a posteriori error estimator, we prove that after each refinement step of the adaptive scheme we achieve a guaranteed reduction of the global discretization error in the mesh dependent energy norm associated with the I...
متن کامل